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We show that, for a test ion moving in a collisionless single-species electron plasma, exact analytical
solutions can be obtained for certain anisotropic velocity distributions of the electron plasma. By comparing
the analytical formula with the numerical results calculated for the more realistic Maxwellian plasma, we
demonstrate that plasmas with three different velocity distributions behave similarly for ions moving with
velocity smaller than the velocity spread of the electrons. Furthermore, we show that the response of the
electron density to a rest ion decays exponentially with distance, provided the anisotropic velocity distribution
exhibits elliptical symmetry.
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I. INTRODUCTION

The new concept of beam cooling, viz., coherent electron
cooling �CEC�, has greatly accelerated interest in the shield-
ing effects of anisotropic plasma for moving ions. As an
effective way of significantly increasing the luminosity of
modern accelerators, the idea of CEC was proposed by Der-
benev in 1980 �1� and a novel scheme with full evaluation
was recently developed by Litvinenko and Derbenev �2�. The
first step of CEC, modulating the electron beam, is realized
by the ion shielding, i.e., the electron-density response to
moving ions. A few facts make the well-established
asymptotic theory for slow-moving ions inapplicable to the
process �3–8�. First, since the proposed interaction time of
the modulation is only about 1

4 – 1
2 of the plasma oscillation,

the transient effects could not be sufficiently Landau damped
and hence the system would not yet reach its equilibrium.
Second, the electron beam has very different longitudinal
and transversal thermal temperatures that make it an aniso-
tropic system. Lastly, as the thermal velocity of the ions and
electrons is comparable, the solution should also apply to
ions moving with velocity comparable to the thermal veloc-
ity of the electrons. Accordingly, we need a more generally
applicable dynamical description of ion shielding in an an-
isotropic nonequilibrium plasma to understand the physics of
the modulation and estimate its efficiency. By solving the
linearized Vlasov-Poisson equations in the time domain, we
found exact analytic solutions for Lorentzian plasmas. For a
rest ion, the analytic solutions are reduced to the well-known
Debye screening formula at t→�. To assess the validity of
the analytic formula, we explore the thermal assumption by
comparing it with the numerical solution for the Maxwellian
plasma.

The content of this paper is organized as follows. In Sec.
II, we show that the linearized Vlasov-Poisson equation sys-
tem is equivalent to an integral equation in the time domain.
In Sec. III, the analytic solutions are derived for two different
types of thermal distribution, the second power and the third
power of the Lorentzian distribution. Section IV presents the

numerical solution for the Maxwellian plasma and compares
it with the analytic solutions. We demonstrate that the third
power of the Lorentzian distribution agrees better with the
numerical result than the second power and qualitatively
gives the correct dependence of the damping rate and plasma
frequency on wavelength, especially in the long-wavelength
region. We also show that the density response of an aniso-
tropic plasma to a rest ion decays exponentially with dis-
tance, provided the velocity distribution of the plasma retains
its elliptical symmetry. In Sec. V, we compare the dynamical
solution with the asymptotic solution in the wave-vector do-
main and the steady-state solution in the space domain �6–8�.
It is shown that the dynamical solution agrees very well with
the steady-state solutions at �pt�2� for the Maxwellian
plasma. Section VI contains our summary.

II. VLASOV-POISSON EQUATIONS

In the linear region, the density variation of the electron
beam is the superposition of the responses induced by each
individual ion. Neglecting the boundary effects and taking
into account the short interaction time, we can simplify the
modulation process to the shielding of a single ion moving in
an infinite single-species electron plasma with constant ve-
locity. If the variation in plasma density is small compared to
its equilibrium background, the higher-order terms can be
ignored and the system can be described with the linearized
Vlasov equation

�

�t
f1�x�,v� ,t� + v� ·

�

�x�
f1�x�,v� ,t� −

eE�

me
·

�

�v�
f0�v�� = 0, �1�

where f1�x� ,v� , t� is the perturbation of electron density in the
phase space and f0�v�� is the velocity distribution of the elec-
tron background which has uniform spatial distribution with
electron density n0. Assuming that the thermal velocity of the
electrons that is small compared with the speed of light, then
the magnetic field may also be ignored, thereby reducing the
Maxwell equations to the Poisson equation,

�� · E� �x�,t� =
��x�,t�
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Considering that the external electric field is caused by an
ion, the charge density in the rest frame of the ion is given by

��x�,t� = Zie��x�� − eñ1�x�,t� , �3�

where ñ1�x� , t�=�f1�x� ,v� , t�d3v. Equations �1�–�3� form a self-
consistent description of the electron plasma driven by a
moving ion, which then is Fourier transformed into the
wave-vector space as

�

�t
f1�k�,v� ,t� + ik� · v� f1�k�,v� ,t� + i

e��k�,t�
me

k� ·
�

�v�
f0�v�� = 0,

�4�

where

��k�,t� =
e

�0k2 �Zi − ñ1�k�,t�� �5�

is the Fourier component of the electric potential and the
system is transformed into the ion rest frame. Multipling
both sides of Eq. �4� by eik�·v�t gives

�

�t
�eik�·v�t f1�k�,v� ,t�� = − i

e

me
��k�,t�eik�·v�t�k� ·

�

�v�
f0�v��� . �6�

Considering the initial condition f1�k� ,0�=0, the integration
of Eq. �6� generates

f1�k�,v� ,t� = − i
e

me
�

0

t

��k�,t1�eik�·v��t1−t�k� ·
�

�v�
f0�v��dt1. �7�

Integrating Eq. �7� over the three-dimensional electron ve-
locities, and noting the relation

i� k�

k2 ·
�

�v�
f0�v��eik�·v�	d3v =� f0�v��eik�·v�		 d3v ,

we finally obtain an integral equation in the wave-vector
space �9,10�.

ñ1�k�,t� = �p
2�

0

t

�ñ1�k�,t1� − Zi��t1 − t�g„k��t − t1�…dt1, �8�

where

g�u�� 	
1

n0
� f0�v��e−iu� ·v�d3v �9�

and �p=
n0e2 /me�0. To progress further analytically, the
electrons’ velocity distribution must be specifically chosen
such that Eq. �8� is solvable.

III. ANALYTICAL SOLUTIONS FOR A LORENTZIAN
PLASMA

A. The second power of the Lorentzian distribution

We consider an electron plasma having the following ve-
locity distribution:

f0�v�� =
n0

�2
x
y
z
�1 +

�vx + v0x�2


x
2 +

�vy + v0y�2


y
2

+
�vz + v0z�2


z
2 �−2

, �10�

where 
x, 
y, and 
z are the parameters describing the plas-
ma’s three-dimensional temperatures and v�0 is the ion’s ve-
locity with respect to the average velocity of the electron
background. The distribution of Eq. �10� is essentially the
second power of the Lorentzian distribution and it gives

g�u�� = exp�iu� · v�0 − R�u��� , �11�

where R�u��	
�ux
x�2+ �uy
y�2+ �uz
z�2. Inserting Eq. �11�
into Eq. �8� and multiplying both sides of the equation by a
common factor e−��k��t yields

H̃1�k�,t� = �p
2�

0

t

�H̃1�k�,t1� − Zie
−��k��t1��t1 − t�dt1, �12�

where

��k�� = ik� · v�0 − 
�kx
x�2 + �ky
y�2 + �kz
z�2 �13�

and

H̃1�k�,t� = ñ1�k�,t�e−��k��t. �14�

Taking the second time derivative for both sides of Eq. �12�
gives the following inhomogeneous second-order ordinary
differential equation �ODE� with constant coefficients:

d2

dt2H̃1�k�,t� + �p
2H̃1�k�,t� = �p

2Zie
−��k��t. �15�

The solution of Eq. �15� comprises homogeneous oscillation
parts and an exponential part from the inhomogeneous term.
After considering the zero initial conditions, ṅ̃1�k� ,0�=0 and
ñ1�k� , t�=0, the solution for ñ1�k� , t� can be obtained as

ñ1�k�,t� =
�p

2

�p
2 + ��k��2

�1 − e��k��t�cos��pt� −
��k��
�p

sin��pt��� .

�16�

The second term in the large parentheses shows the transient
plasma oscillation induced by the ion’s presence. The oscil-
lation is Landau damped after a few plasma oscillations, and
only those components with a very long wavelength remain
oscillating as shown in Fig. 1. The first derivative of Eq. �16�
reads

ṅ̃1�k�,t� = Zi�p sin��pt�e��k��t. �17�

The Fourier inversion of Eq. �17� generates the time deriva-
tive of the electron-density variation,
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ṅ̃1�x�,t� =
Zi�
x
y
z�−1�pt sin��pt�

�2�t2 +
�x + v0xt�2


x
2 +

�y + v0yt�2


y
2 +

�z + v0zt�2


z
2 �2 .

�18�

Taking into account the initial conditions, the electron den-
sity response is derived as the following one-dimentional
integration:

ñ1�x̄�,�� =
Zi

�2axayaz
�

0

�

�1 sin��1���1
2 + �x̄ + v̄0x�1�2

+ �ȳ + v̄0y�1�2 + �z̄ + v̄0z�1�2�−2d�1, �19�

wherein the normalized variables are defined as �	�pt, ai
	
i /�p, x̄i	xi /ai, v̄0i	v0i /
i, and i=x ,y ,z. Equation �19�
essentially is the sum of a few sinusoidal integrals and no
further significant simplification can be made analytically.
Figure 2 plots the results of numerical integration for Eq.

�19�. The snapshots at �=� are shown for a rest ion and a
moving ion with v0z=10
z. Actually, in the case of v�0=0 and
t→�, Eq. �19� reduces to the following equilibrium solution:

ñ1�x�� =
Zi

�2axayaz
�

0

� � sin �d�

��2 + r̄2�2 =
Zi

4�axayaz

1

r̄
e−r̄, �20�

where r̄=
x̄2+ ȳ2+ z̄2. Equation �20� predicts that the electron
density modulation decays exponentially with distance.
When the three temperatures in each direction are the same,
Eq. �18� reproduces the well-known Debye screening for-
mula. Figure 3 shows the time evolution of the electron re-
sponse to an ion moving with velocity v̄0=5. Since Landau
damping is efficient for the short-wavelength component, the
local density around the ion stops varying after 1

2 of the
plasma oscillation.

Figure 2�b� demonstrates the tendency of the charge dis-
tribution to concentrate into a smaller cone as the ion veloc-
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FIG. 1. �Color online� Mountain range plot for the electron response ñ1�k� , t� as a function of the wave number and time. The horizontal
axis is the normalized wave number as defined in Eq. �25�. The graph depicts the ion’s velocity and the wave vector k� along the z direction,
and v̄0z=5
z. Starting from the bottom, the snapshos are taken at � /�=0.5,1 ,2 ,4 ,7.5,10.25,20. Each curve is shifted vertically by one
grid with respect to its prior curve to show the time dependence.

FIG. 2. �Color online� Response of the second-power Lorentzian
plasma to an ion. The horizontal and vertical axes are, respectively,
the normalized spatial coordinates x and y in units of their Debye
radiis ax and ay. The left graph is for a rest ion and the right for an
ion with velocity v0z=10
z. The snapshot is taken at �=�.
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FIG. 3. �Color online� Mountain range plot for the electron
response ñ1�x̄� ,�� as a function of the longitudinal location and
time. The graph represents the transverse location x̄= ȳ=0.3.
Starting from the bottom, the snapshots are taken at � /�
=0.1,0.15,0.2,0.3,0.5,1 ,2.5,10. Each curve is shifted vertically
by one grid with respect to its prior curve to show the time
dependence.
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ity increases. This effect is verified by integrating Eq. �19�
over a certain solid angle and radius, as shown in Fig. 4. The
integration can be carried out analytically and expressed in
the following form:

Q̃�c, r̄c,�� =� � �
Vcone

ñ1�x�,��dV

=
Zie

�axayaz
�

0

�

�1 sin��1��I�0, r̄c,�1�

− I�c, r̄c,�1��d�1, �21�

where

I�c, r̄c,�� =

Im�r̄0 ln�1 −
r̄c

r̄0
��

�2v̄0

1 + v̄0

2 sin2 c

and

r̄0 = v̄0� cos c + i�
1 + v̄0
2 sin2 c

Figure 5 shows the numerical integration results of Eq. �21�.
In Fig. 5�a�, we plot as a function of time the total electron
charge induced by an ion moving with velocity v̄0=1 inside
a sphere with radius r̄c=2. Reaching its maximum after 1

4 – 1
2

plasma oscillations, the total induced charge around the ion
remains almost constant. The effects of velocity on the

charge distribution are shown in Fig. 5�b�. For example, as
the velocity increases to v̄0=5, 80% of the total induced
charge is concentrated into the backward cone with c
=� /5.

We note that the distribution described in Eq. �10� has
some drawbacks. Although the plasma oscillation and Lan-
dau damping are described in Eq. �16�, their wavelength de-
pendence is quite different from that of a Maxwellian
plasma. Actually the distribution of Eq. �10� does not even
define the rms spread of the velocity distribution. To obtain
analytic results that are more realistic and closer to the Max-
wellian plasma, we consider the third power of the Lorentz-
ian distribution.

B. The third power of the Lorentzian distribution

The normalized velocity distribution of the third-power
Lorentzian distribution reads

f0�v�� =
4n0

�2
x
y
z
�1 +

�vx + v0x�2


x
2 +

�vy + v0y�2


y
2

+
�vz + v0z�2


z
2 �−3

. �22�

Inserting Eq. �25� into Eq. �9� yields

g�u�� = �1 + R�u���eiu� ·v�0−R�u��, �23�

where R�u�� is the same as defined in Eq. �11�. Following
similar steps as in the previous section, we obtain the follow-
ing third-order ODE with constant coefficients

H̃1� + H̃1� + 2k̄H̃1 = Zik̄�3 − i�v̄0�e�1−i�v̄0�k̄�, �24�

where v̄0= v̄�0,

k̄ = 
�kx
x�2 + �ky
y�2 + �kz
z�2, �25�

and �	k� ·v�0 / k̄v̄0. The derivative is with respect to the nor-

malized time �. H̃1�k� , t� is as defined in Sec. III A. With the

cθ

0vcr

FIG. 4. �Color online� Integration volume Vcone of Eq. �21�. rc

and c are the integration radius and angle cutoff, respectively. The
ion is moving with velocity v0 and the induced charge within the
backward cone is to be calculated.
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FIG. 5. �Color online� Integrated electron charge induced by a moving ion inside a certain solid angle and radius. �a� Total induced
electron charge inside a sphere with radius r̄c=2 as a function of time, and �b� angular charge distribution. The horizontal axis is the solid

angle of the backward cone in units of 2� and the vertical axis is Q̃�c� / Q̃���, where the radial cutoff is r̄c=5 and the snapshots are taken
at �=2�.
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help of initial conditions H̃1�0�=0, H̃1��0�=0, and H̃1��0�=Zi,
Eq. �24� can be analytically solved �11� and the electron-
density response in the wave-vector domain is

ñ1�k�,t� =
Zi

1 + ��2�1 + c̃1e−��+�0�� − e−��−�0/2��

���1 + c̃1�cos��1�� +
�

�1
�1 −

�0

2�
�1 + 3c̃1��

� sin��1���� , �26�

where ��k�� is defined in Eq. �13� and ��k��, �0�k̄�, �1�k̄�, and
c̃1�k�� are functions of the wave vector defined as

�0�k̄� 	 �
k̄2 +
1

27
+ k̄�1/3

− �
k̄2 +
1

27
− k̄�1/3

,

�1�k̄� 	

3

2
��
k̄2 +

1

27
+ k̄�1/3

+ �
k̄2 +
1

27
− k̄�1/3� ,

���� 	 1 −
2

3 − i�v̄0

,

c̃1�k�� 	 −
�2�1 − �� + �0

2

3�0
2 + 1

.

Equation �26� has a few major differences compared with
Eq. �16�. First, the frequency of the plasma oscillation now is
a function of the wavelength. Second, the Landau damping
rate is reduced, especially at long wavelength, since �0 is

always a positive number and behaves as k̄1/3 at large k̄,

while ��k�� depends linearly on k̄. Third, the factor � appears
in the factor outside the brackets; it is 1

3 for v0=0. This factor
is important when comparing the results of different velocity
distributions. Last, there is a fast-damping term in the brack-
ets, and its damping proceeds far faster than the Landau
damping of the plasma oscillation. Fourier inversion of Eq.
�26� is too complicated to be analyzed manually. The nu-
merical results are shown in the following section, and com-
pared with those for the Maxwellian plasma and the second-
power Lorentzian plasma.

IV. COMPARISON WITH THE MAXWELLIAN PLASMA

The Maxwellian plasma is the most often considered and
a more realistic plasma than the Lorentzian plasma. The ve-
locity distribution of the Maxwellian electron plasma is

f0�v�� =
n0

�2��3/2�x�y�z
exp�−

�vx + v0x�2

2�x
2 −

�vy + v0y�2

2�y
2

−
�vz + v0z�2

2�z
2 � , �27�

where �x, �y, and �z are the rms spreads of the electron
thermal velocities. Unlike a Lorentzian plasma, it defines the

average value for any power of the velocities and is naturally
reached through collision processes. Unfortunately, the ana-
lytic approach for describing the Maxwellian plasma dynam-
ics is usually difficult; the solution of the integral equation
�8� must be found numerically. However, since Eq. �8� has
no singularity at t= t1, the numerical solution is straightfor-
ward. After inserting Eq. �27� and carrying out the integra-
tion for the inhomogeneous part, we can write Eq. �8� as

H̃1�k�,t� = �
0

�

H̃1�k�,	�W�� − 	�d	 + G��� , �28�

where H̃1�k� , t�	 ñ1�k� , t�e−ik�·v�0t and W�	�	−	e−�k̄	�2/2. The in-
tegration of the inhomogeneous part reads

G��� =
Zi

k̄2
�e−ik̄v̄0���1 + i
�

2
v̄0�w� v̄0�


2
��

− e−�k̄��2/2�1 + i
�

2
v̄0�w�i
2k̄� +

v̄0�


2
��� ,

where w�z�	e−z2
Erfc�−iz� is the Faddeeva function. Equa-

tion �28� is a Volterra equation of the second type that can be
solved simply by iteration. Figure 6 shows the responses of
the second-power Lorentzian, third-power Lorentzian, and
Maxwellian plasmas to an ion moving with velocity v̄0=0,
0.5, 1, and 3. Clearly, they exactly overlap with each other

for v�0=0� . �We will show later that in order to have the same

Debye radius at v�0=0� , for the second-power Lorentzian
plasma �i=
i and for the third-power Lorentzian plasma �i
=
i /
3.� Since normalized variables are used in the calcula-
tions, Fig. 4 also describes the anisotropic plasmas. As Eq.
�20� shows, the analytic black curve in Fig. 6�a� represents
an exponential decay, which suggests that the responses of
the other two plasmas to a rest ion also exponentially decay,
regardless of whether or not the plasma is isotropic. Provided
that the velocity distribution has elliptical symmetry, the re-
sponse of the electron plasma to a rest ion always exponen-
tially decays with the distance. This is verified in the follow-
ing. By making a Laplace transformation of Eq. �4�, the
electron density response in �k� , p� space can be written as

ñ1�k�,p� = − i
Zi

p

�p
2

k2 �
k� ·

�

�v�
f0�v��

p + ik� · v�
d3v

1 − i
�p

2

k2 �
k� ·

�

�v�
f0�v��

p + ik� · v�
d3v

, �29�

where

ñ1�k�,p� = �
0

�

ñ1�k�,t�e−ptdt .

The electron response in the time domain then is obtained by
inversely transforming Eq. �29� according to the following
formula:
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ñ1�k�,t� =
1

2�i
�

−i�+�

i�+�

ñ1�k�,p�eptdp . �30�

The integral in Eq. �30� is calculated by summing up all the
residues at the poles of ñ1�k� , p�. All poles obtained from
solving the dispersion relation

1 − i
�p

2

k2 � k� · ��/�v��f0�v��

p + ik� · v�
d3v = 0 �31�

go to zero with t→�, and only the pole at p=0 survives at
equilibrium. Consequently, the electron response at equilib-
rium can be obtained by calculating just the residue at p=0.
Assuming that the velocity distribution of the electron
plasma has elliptical distribution, i.e.,

f0�v�� = f0�v̄� ,

where v̄=
vx
2 /
x

2+vy
2 /
y

2+vz
2 /
z

2, the integral in Eq. �29� for
p=0 can be simplified to

�p
2

k2 � k� · ��/�v��f0�v��

p + ik� · v�
d3v = i

4�
x
y
z

k̄2
�

0

�

f0�v̄�dv̄ .

�32�

Inserting Eq. �32� into Eq. �29� gives

ñ1�k�,t → �� =
Zi

1 + �0k̄2
, �33�

where

�0 	
1

4�
x
y
z�0
�f0�v̄�dv̄

. �34�

The inverse Fourier transformation of Eq. �33� generates

ñ1�x�,t → �� =
Zi

4�axayaz

e−r̄

r̄
, �35�

where ai	
�0
i /�p and r̄=
x2 /ax
2+y2 /ay

2+z2 /az
2. By calcu-

lating �0 for all three velocity distributions and comparing
the results with Eqs. �16� and �26�, it is verified that the
formula of Eq. �33� is consistent with the previous calcula-
tions. Figure 6 also suggests that, for v0��e, both the
second- and third-power Lorentzian plasmas behave simi-
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FIG. 6. �Color online� Responses of three different electron plasmas to an ion moving with various velocities. �a� is for a rest ion, �b� is
for v̄0=0.5, �c� is for v̄0=1, and �d� is for v̄0=3. The horizontal axis is the longitudinal distance from the ion in units of the longitudinal
Debye radius and the vertical axis is the induced electric charge per Debye volume. The snapshot is taken at �=�.
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larly to the Maxwellian plasma, but the third-power Lorent-
zian plasma apparently is better than the second-power one.
When v0 is a few �e, the response of the Maxwellian plasma
is more localized than that of Lorentzian plasmas as seen in
Fig. 7, comparing a snapshot of the Maxwellian with that of
the second-power Lorentzian plasma; this comparison is also
valid for the third-power Lorentzian plasma.

V. COMPARISON WITH THE ASYMPTOTIC RESULTS

Although the response of the Maxwellian plasma to an
ion is difficult to obtain analytically, asymptotic formulas
were derived in both the space and the wave-vector domains.
Landau in the 1940s �12� found that the dependence of the
plasma frequency and Landau damping rate on the wave-
length are

� = �p�1 +
3

2
k2rD

2 � ,

� = �p
�

8

1

�krD�3 exp�−
1

2�krD�2 −
3

2
�

for the isotropic Maxwellian plasma at the limit krD�1. Fig-
ures 8�a� and 8�b� show the plasma frequency and Landau
damping rates for all three distributions at the long-
wavelength limit. The third-power Lorentzian plasma clearly
is much closer to the Maxwellian plasma than is the second-
power one at this limit. At the short-wavelength limit, krD
�1, the plasma frequency and Landau damping rate are
given by

� = �p
�krD

��k��
,

� = �pkrD��k�� ,

where ��k�� is implicitly determined by the following equa-
tion:

�e�2/2 =
1

2

�krD�2.

Since ��k�� is a slowly varying function, both the Landau
damping rate and the plasma frequency grow linearly with
krD. As shown in Figs. 8�c� and 8�d�, although the behaviors
of the Lorentzian plasmas are quite different from that of the
Maxwellian plasma in the short-wavelength limit, the third-
power Lorentzian distribution still is closer to it than is the
second-power Lorentzian distribution.

Several authors have calculated numerical solutions of the
stationary electrostatic potential for the Maxwellian plasma
in the space domain �6–8�. To compare our results with these
previous numerical solutions, the electric potential must be
calculated. By combining Eqs. �5� and �17�, the time deriva-
tive of the electric potential in the k� domain is

�̇�k�,t� = −
Zie�p

�0k2 sin��pt�e��k��t. �36�

By Fourier transforming Eq. �36� and taking into account the
initial condition ��x� ,0�=Zie /4��0x�, the electric potential
induced by a moving ion in the second-power Lorentzian
plasma is obtained as

FIG. 7. �Color online� Responses of the electron plasmas to a fast ion. The horizontal axis is the longitudinal distance in units of
longitudinal Debye radius and the vertical axis is the transverse distance in units of transverse Debye radius. The top graph is for the
second-power Lorentzian plasma and the bottom one is for the Maxwellian plasma. The ion is moving with velocity v0=5 and the snapshot
is taken at �=�.
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��x�,t� =
Zie

4��0
� 1

x�
−

2�p

�
�

0

t sin��p	�
x� + v�0	

� arctan� x� + v�0	

	

�d	� �37�

for 
x,y,z=
. Equation �5� also can be used to calculate the
electric potential for the Maxwellian plasma by the fast Fou-
rier transform method �FFT� since ñ1�k� , t� was already nu-
merically solved. Figure 9 presents the results for the in-
duced electric potential at ��2�. Figure 9�a� shows the
analytic result expressed in Eq. �37� for the second-power
Lorentzian plasma; the snapshot is taken at �=60�. Com-
pared with the numerical results for the Maxwellian plasma,
the results for the Lorentzian plasma agree very well for vi
�
2
e but the curve flattened more at higher velocities. Fig-
ure 9�b� shows the FFT results for the Maxwellian plasma at
��2�, which agree very well with the steady-state results
�Fig. 7 of Ref. �6�, Fig. 4 of Ref. �8�, and Fig. 9 of Ref. �7��.
Since the Landau damping is slow for relatively long wave-
lengths, some small differences at the tail still may exist. As
the longitudinal range of the FFT calculation is limited by
the computer’s memory and solution of the dynamical equa-
tion �28� for a very long time range is also time consuming,

Fig. 9�b� shows results only for a relatively short time range,
and vi�2
2�e.

The steady-state effective potential of a rest ion in an
anisotropic plasma was calculated by Montgomery et al. in
the 1960s and an inverse-third-power law at large distance
was found �3�. Since we have obtained the steady-state elec-
tron density response for a rest ion in Eq. �35�, the electric
potential can be calculated by using the multipole moments
expansion. From Eq. �35�, the total induced charge is

− e� � � ñ1�x�,t → ��dV = − Zie ,

which exactly cancels the charge of the ion. The dipole mo-
ment also vanishes as ñ1�x� , t→�� is an even function of x, y,
and z. Thus the dominant term at the large distance is from
the quadrupole moment,

��x�� =
1

4��0

1

2�
i,j

Qij
xixj

r5 , �38�

where

Qij = − e� � � �3xixj − r2�ij�ñ1�x�,t → ��dV . �39�
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FIG. 8. �Color online� Plasma frequency and Landau damping rate at the limits of long and short wavelengths. The horizontal axis is krD.
�a� and �b� show the plasma frequency and Landau damping rate in units of �p at krD�1 while �c� and �d� show the other limit krD�1. The
solid �red� line is for the approximate formula for the Maxwellian distribution derived in �12�, the dot-dashed �black� line and the dashed
�blue� line are for the analytic formulas derived for the second- and third-power Lorentzian distributions, respectively.
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From Eqs. �35�, �38�, and �39�, the electric potential due to
the quadrupole moment is

��x�� =
Zie

4��0r5 ��ay
2 + az

2 − 2ax
2�x2 + �ax

2 + az
2 − 2ay

2�y2

+ �ax
2 + ay

2 − 2az
2�z2� . �40�

If 
x=
y =
� and 
z	
�, Eq. �40� reduces to

��x�� =
Zie
�

2

2��0r3�p
2�1 −


�
2


�
2 ��1 −

3

2

x2 + y2

r2 � , �41�

which reproduces Eq. �18� in Ref. �3�.

VI. SUMMARY

The dynamic model described in Secs. II and III depends
on the choice of the velocity distribution. This dependence
seems to be weak while the ion is moving with velocity vi

��e. Consequently, the analytic formula obtained for the
Lorentzian distribution can describe the process with good
accuracy. For fast ions, the effects due to the thermal distri-
bution strengthen, but for ion velocities up to a few �e, the
formula obtained for the third-power Lorentzian distribution
still can serve as a qualitative estimation. The numerical so-
lution for the Maxwellian distribution is straightforward un-
der our model and might be much faster than particle in cell
simulations. As discussed in Sec. IV, the electron density
response for a rest ion in an anisotropic plasma seemingly
decays exponentially, which generates a quadrupole-type
electric potential at large distance.
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FIG. 9. �Color online� Electric potential along the z axis for various ion speeds. The horizontal axis is the longitudinal distance from the
moving ion and the vertical axis is the electrical potential in units of Zie /rD. �a� The analytic results for the second-power Lorentzian plasma
at �=60�, and, �b� the numerical results for the Maxwellian plasma. The curves v0 /
2�e=1 �red� and 2 �green� curve were taken at �
=7� and the v0 /
2�e=0.3 curve �blue� at �=15�.
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